DeGiorgi-Nash lecture notes

Brian Krummel

March 15, 2016

1 Statement of theorems

Theorem 1. Suppose $u \in W^{1,2}\left(B_{R}\left(x_{0}\right)\right)$ such that $u \geq 0$ in $B_{R}\left(x_{0}\right)$ and

$$
L u=D_{i}\left(a^{i j} D_{j} u+b^{i} u\right)+c^{j} D_{j} u+d u \geq D_{i} f^{i}+g \text { weakly in } B_{R}\left(x_{0}\right),
$$

where $a^{i j} \in L^{\infty}\left(B_{R}\left(x_{0}\right)\right), b^{i}, c^{i}, f^{i} \in L^{q}\left(B_{R}\left(x_{0}\right)\right)$, and $d, g \in L^{q / 2}\left(B_{R}\left(x_{0}\right)\right)$ for $q>n$ such that

$$
\begin{equation*}
a^{i j}(x) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2} \text { for a.e. } x \text { and } \xi \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

for some constant $\lambda>0$ and

$$
\begin{equation*}
\sum_{i, j=1}^{n}\left|a^{i j}\right|^{2} \leq \Lambda^{2}, \quad \lambda^{-2} R^{2-2 n / q} \sum_{i, j=1}^{n}\left(\left\|b^{i}\right\|_{L^{q}}^{2}+\left\|c^{i}\right\|_{L^{q}}^{2}\right)+\lambda^{-1} R^{2-2 n / q}\|d\|_{L^{q / 2}} \leq \nu \tag{2}
\end{equation*}
$$

on $B_{R}\left(x_{0}\right)$ for some constants $\Lambda, \nu \in(0, \infty)$. Then $u \in L^{\infty}\left(B_{R / 2}\left(x_{0}\right)\right)$ such that for $p>1$,

$$
\sup _{B_{R / 2}\left(x_{0}\right)} u \leq C\left(R^{-n / p}\|u\|_{L^{p}\left(B_{R}\left(x_{0}\right)\right)}+\lambda^{-1} R^{1-n / q}\|f\|_{L^{q}\left(B_{R}\left(x_{0}\right)\right)}+\lambda^{-1} R^{2-2 n / q}\|g\|_{L^{q / 2}\left(B_{R}\left(x_{0}\right)\right)}\right)
$$

for some constant $C=C(n, q, p, \Lambda / \lambda, \nu) \in(0, \infty)$.
Theorem 2 (Weak Harnack inequality). Suppose $u \in W^{1,2}\left(B_{2 R}\left(x_{0}\right)\right)$ such that $u \geq 0$ in $B_{2 R}\left(x_{0}\right)$ and

$$
L u=D_{i}\left(a^{i j} D_{j} u+b^{i} u\right)+c^{j} D_{j} u+d u \leq D_{i} f^{i}+g \text { weakly in } B_{2 R}\left(x_{0}\right),
$$

where $a^{i j} \in L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)$, $b^{i}, c^{i}, f^{i} \in L^{q}\left(B_{2 R}\left(x_{0}\right)\right)$, and $d, g \in L^{q / 2}\left(B_{2 R}\left(x_{0}\right)\right)$ for $q>n$ such that (1) and (2) hold (on $B_{2 R}\left(x_{0}\right)$) for some constants $\lambda, \Lambda, \nu \in(0, \infty)$. Then for $1 \leq p<n /(n-2)$,

$$
R^{-n / p}\|u\|_{L^{p}\left(B_{R}\left(x_{0}\right)\right)} \leq C\left(\inf _{B_{R / 2}\left(x_{0}\right)} u+\lambda^{-1} R^{1-n / q}\|f\|_{L^{q}\left(B_{R}\left(x_{0}\right)\right.}+\lambda^{-1} R^{2-2 n / q}\|g\|_{L^{q / 2}\left(B_{R}\left(x_{0}\right)\right)}\right)
$$

for some constant $C=C(n, q, p, \Lambda / \lambda, \nu) \in(0, \infty)$.
Observe that Theorem 1 says remarkably that if we have a subsolution $u \in W^{1,2}$, which needn't be bounded, then in fact u is bounded. In fact we will later use Theorem 2 to say something slightly stronger, namely that any solution $u \in W^{1,2}$ to an elliptic equation is in fact Hölder continuous. In the proof, we will show that u is bounded by showing $u \in L^{p}$ for all $p \geq 1$ with the average L^{p}
norm of u uniformly bounded independent of p. Thus the interesting step here is how we go from $u \in L^{2}$ to $u \in L^{p}$ for $p \geq 2$. This is called Moser iteration.

Recall that later we will prove a Hölder continuity estimate using the weak Harnack inequality. In the case of quasilinear elliptic equations, which is a class of nonlinear elliptic equations including the minimal surface equation, by differentiating the quasilinear equation one can use this to prove $C^{1, \mu}$ estimates on solutions. This is the key to the Leray-Schauder existence theory for quasilinear elliptic equations. Using the maximum principle and energy estimates, one can establish C^{1} bounds on solutions to quasilinear elliptic equations in divergence form, however the Leray-Schauder theory requires a $C^{1, \mu}$ bound.

Before looking at the proof, observe that by combining Theorems 1 and 2, we obtain:
Corollary 1 (Harnack inequality). Let Ω be a connected open set in \mathbb{R}^{n}. Suppose $u \in W^{1,2}(\Omega)$ such that $u \geq 0$ in Ω and

$$
L u=D_{i}\left(a^{i j} D_{j} u+b^{i} u\right)+c^{j} D_{j} u+d u=D_{i} f^{i}+g \text { weakly in } \Omega,
$$

where $a^{i j} \in L^{\infty}(\Omega), b^{i}, c^{i}, f^{i} \in L^{q}(\Omega)$, and $d, g \in L^{q / 2}(\Omega)$ for $q>n$ such that (1) holds true on Ω and

$$
\sum_{i, j=1}^{n}\left|a^{i j}\right|^{2} \leq \Lambda^{2}, \quad \lambda^{-2} \sum_{i, j=1}^{n}\left(\left\|b^{i}\right\|_{L^{q}(\Omega)}^{2}+\left\|c^{i}\right\|_{L^{q}(\Omega)}^{2}\right)+\lambda^{-1}\|d\|_{L^{q / 2}(\Omega)} \leq \nu
$$

for some constants $\lambda, \Lambda, \nu \in(0, \infty)$. Then $u \in L_{\text {loc }}^{\infty}(\Omega)$ and for every $\Omega^{\prime} \subset \subset \Omega$,

$$
\sup _{\Omega^{\prime}} u \leq C\left(\inf _{\Omega^{\prime}} u+\lambda^{-1}\|f\|_{L^{q}(\Omega)}+\lambda^{-1}\|g\|_{L^{q / 2}(\Omega)}\right)
$$

for $C=C\left(n, \Lambda / \lambda, \nu, \Omega^{\prime}, \Omega\right) \in(0, \infty)$.
Proof. By combining Theorems 1 and 2, choosing $p \in\left(1, n /(n-2)\right.$), for every ball $B_{4 R}\left(x_{0}\right) \subset \subset \Omega$,

$$
\begin{equation*}
\sup _{B_{R}\left(x_{0}\right)} u \leq C\left(\inf _{B_{R}\left(x_{0}\right)} u+\lambda^{-1} R^{1-n / q}\|f\|_{L^{q}(\Omega)}+\lambda^{-1} R^{2-2 n / q}\|g\|_{L^{q / 2}(\Omega)}\right) \tag{3}
\end{equation*}
$$

for some constant $C=C(n, q, p, \Lambda / \lambda, \nu) \in[2, \infty)$. Cover Ω^{\prime} be a finite collection of open balls $B_{j}=B_{R_{j}}\left(x_{j}\right), j=1,2, \ldots, N$, such that $B_{4 R_{j}}\left(x_{j}\right) \subset \subset \Omega$. Assume $\bigcup_{j=1}^{N} B_{j}$ is connected, as otherwise $\bigcup_{j=1}^{N} B_{j}$ consists of finitely many connected components, each of which can be connected by a continuous path in Ω since Ω is connected and then we can cover the path by additional balls B_{j} until $\bigcup_{j=1}^{N} B_{j}$ is connected. Let $y, z \in \Omega^{\prime}$ and $\gamma:[0,1] \rightarrow \Omega^{\prime}$ be a path from $\gamma(0)=y$ to $\gamma(1)=z$. It is clear that since the balls B_{j} cover the image of γ, we can label the balls $B_{1}, B_{2}, \ldots, B_{M}$, where $M \leq N$, and find times $0=t_{0}<t_{1}<t_{2}<\cdots<t_{M-1}<t_{M}=1$ so that $\gamma\left(t_{j}\right) \in B_{j} \cap B_{j+1}$ for $1 \leq j<M$. Specifically, inductively define B_{j} and t_{j} by choosing B_{1} containing y and then for each $j \geq 1$ choosing B_{j+1} to contain $\gamma\left(\tau_{j}\right)$, where $\tau_{j}=\sup \left\{t \in\left(t_{j-1}, 1\right]: \gamma(t) \in B_{j}\right.$ and then choosing t_{j} slightly less than τ_{j} such that $\gamma\left(t_{j}\right) \in B_{j} \cap B_{j+1}$. By (3),

$$
\begin{equation*}
\sup _{B_{j}} u \leq C\left(\inf _{B_{j}} u+\lambda^{-1}\|f\|_{L^{q}(\Omega)}+\lambda^{-1}\|g\|_{L^{q / 2}(\Omega)}\right) \tag{4}
\end{equation*}
$$

for all $j=1,2, \ldots, M$ for some constant $C \in[1, \infty)$ depending only on $n, q, \Lambda / \lambda, \nu$, and the radii R_{j}. After perturbing y, z, and t_{j} slightly if necessary to account for the fact that u is only defined up to sets of zero measure, (4) implies that

$$
u\left(\gamma\left(t_{j}\right)\right) \leq C\left(u\left(\gamma\left(t_{j+1}\right)\right)+\lambda^{-1}\|f\|_{L^{q}(\Omega)}+\lambda^{-1}\|g\|_{L^{q / 2}(\Omega)}\right)
$$

for $j=0,1,2, \ldots, M-1$, from which it follows that

$$
u(y) \leq C^{N} u(z)+\sum_{j=1}^{N} C^{j} \lambda^{-1}\left(\|f\|_{L^{q}(\Omega)}+\|g\|_{L^{q / 2}(\Omega)}\right)
$$

Taking the essential supremum over $y \in \Omega^{\prime}$ and the essential infimum over $z \in \Omega^{\prime}$,

$$
\sup _{\Omega^{\prime}} u \leq C^{N} \inf _{\Omega^{\prime}} u+\sum_{j=1}^{N} C^{j} \lambda^{-1}\left(\|f\|_{L^{q}(\Omega)}+\|g\|_{L^{q / 2}(\Omega)}\right) .
$$

2 Part 1 of proof: Weak equation and Moser iteration

In this section we will prove Theorem 1 and begin the proof of Theorem 2. It will be convenient to do this with the two theorems jointly. First we can assume by translation and rescaling that $x_{0}=0$ and $R=1$.

The basic idea is to use the test function $\zeta=u^{\beta} \eta^{2}$ in the weak equation

$$
\begin{equation*}
\int a^{i j} D_{j} u D_{i} \zeta \leq(\geq) 0 \tag{5}
\end{equation*}
$$

where $\eta \in W_{0}^{1,2}$. For now assume that $\zeta \in W_{0}^{1,2}$; we will come back this later. The choice of test function yields

$$
\beta \int a^{i j} u^{\beta-1} D_{i} u D_{j} u \eta^{2} \leq(\geq)-2 \int a^{i j} u^{\beta} \eta D_{j} u D_{i} \eta .
$$

Now choose $\beta>0$ if $L u \geq 0$ weakly in B_{1} and $\beta<0$ if $L u \leq 0$ weakly in B_{1}. By ellipticity and the bound on $a^{i j}$,

$$
|\beta| \lambda \int u^{\beta-1}|D u|^{2} \eta^{2} \leq 2 \Lambda \int u^{\beta} \eta|D u||D \eta|
$$

and so by Cauchy's inequality,

$$
\begin{equation*}
\int u^{\beta-1}|D u|^{2} \eta^{2} \leq \frac{4 \Lambda^{2}}{\beta^{2} \lambda^{2}} \int u^{\beta+1}|D \eta|^{2} . \tag{6}
\end{equation*}
$$

Now assume that $\beta \neq-1$ and let $\gamma=(\beta+1) / 2$ and $w=u^{\gamma}$ to get

$$
\int|D w|^{2} \eta^{2} \leq \frac{4 \Lambda^{2} \gamma^{2}}{\beta^{2} \lambda^{2}} \int w^{2}|D \eta|^{2}
$$

which implies

$$
\int|D(w \eta)|^{2} \leq C \int w^{2}|D \eta|^{2}
$$

for some constant $C=C(\Lambda / \lambda) \in(0, \infty)$ provided β remains bounded away from zero. Applying the Sobolev inequality on the left-hand-side,

$$
\|w \eta\|_{L^{2 \kappa}\left(B_{1}\right)} \leq C\|w D \eta\|_{L^{2}\left(B_{1}\right)}
$$

where $\kappa=n /(n-2)>1$ if $n \geq 3$ and $1<\kappa<\infty$ and $C=C(n, \Lambda / \lambda) \in(0, \infty)$ is a constant. (Note that in the general case where $b^{i}, c^{i}, d, f^{i}, g$ are not all zero, we also use the Hölder inequality here to deal with these terms.) Using the fact that $w=u^{\gamma}$ and choosing η be a cutoff function such that

$$
\begin{equation*}
\|u\|_{L^{2 k \gamma}\left(B_{r}\right)} \leq\left(C(s-r)^{-1} \gamma\right)^{1 / \gamma}\|u\|_{L^{2 \gamma}\left(B_{s}\right)} \tag{7}
\end{equation*}
$$

if $\gamma>0$ and $0<r<s$ and

$$
\begin{equation*}
\|u\|_{L^{2 \gamma}\left(B_{s}\right)} \leq\left(C(s-r)^{-1}|\gamma|\right)^{1 /|\gamma|}\|u\|_{L^{2 \kappa \gamma}\left(B_{r}\right)} \tag{8}
\end{equation*}
$$

if $\gamma<0$ and $0<r<s$. Note that we let $\|u\|_{L^{p^{\prime}(B)}}=\left(\int_{B} u^{p^{\prime}}\right)^{1 / p^{\prime}}$ for any ball B even when $p^{\prime}<1$, though this is clearly just notation and does not represent a norm. The basic idea now is to iterate the inequalities (7) and (8).

Now the above argument is not quite rigorous yet since we need $\zeta \in W_{0}^{1,2}\left(B_{1}\right)$. Consider more generally $\zeta=G(u) \eta^{2}$, where $G: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1}. To show that $\zeta \in W^{1,2}$ we typically use the fact that G^{\prime} is bounded. However, when $G(t)=t^{\beta}, G^{\prime}(t)=\beta t^{\beta-1}$, which becomes unbounded as $t \rightarrow \infty$ for $\beta>1$ and becomes unbounded as $t \downarrow 0$ for $\beta<1$. By replacing u with $u+\varepsilon$ for $\varepsilon \downarrow 0$, we can prove Theorems 1 and 2 in the special case that u is strictly positive. Moreover, when $\beta>1$ we instead let $\zeta=G(u) \eta^{2}$ in (5), where

$$
G(t)= \begin{cases}t^{\beta} & \text { if } t \leq N \\ N^{\beta}+\beta N^{\beta-1}(t-N) & \text { if } t \geq N\end{cases}
$$

This yields

$$
\int a^{i j} G^{\prime}(u) D_{i} u D_{j} u \eta^{2} \leq-2 \int a^{i j} G(u) \eta D_{j} u D_{i} \eta .
$$

By ellipticity and the bound on $a^{i j}$ and the fact that $G(u) \leq G^{\prime}(u) u$ due to G being convex,

$$
\lambda \int G^{\prime}(u)|D u|^{2} \eta^{2} \leq 2 \Lambda \int G^{\prime}(u) u \eta|D u||D \eta|
$$

and so by Cauchy's inequality,

$$
\int G^{\prime}(u)|D u|^{2} \eta^{2} \leq \frac{4 \Lambda^{2}}{\lambda^{2}} \int G^{\prime}(u) u^{2}|D \eta|^{2}
$$

Now if $u \in L^{2 \gamma}\left(B_{1}\right)$, then we can let $N \rightarrow \infty$ to obtain (6) and then argue as above to obtain (7).
Now let us suppose that $L u \geq 0$ weakly in B_{1} and return to (7). Choose $\gamma=\kappa^{j-1} p / 2$, $r=1 / 2+2^{-j-1}$, and $s=1 / 2+2^{-j}$ in (7) for $j=1,2,3, \ldots, m$ to get

$$
\|u\|_{L^{\kappa^{m} m_{p}\left(B_{1 / 2}\right)}} \leq \prod_{j=1}^{m}(C p)^{2 \kappa^{-j+1} / p} 2^{2 j \kappa^{-j+1} / p} \kappa^{2(j-1) \kappa^{-j+1} / p}\|u\|_{L^{p}\left(B_{1}\right)}
$$

for all $m=1,2,3, \ldots$ and some constant $C=C(n, \Lambda / \lambda) \in(0, \infty)$ provided $u \in L^{p}\left(B_{1}\right)$. Using the fact that $\sum_{j=1}^{\infty} \kappa^{-j}<\infty$ and $\sum_{j=1}^{\infty} j \kappa^{-j}<\infty$ since $\kappa>1$,

$$
\begin{equation*}
\|u\|_{L^{\kappa^{m} m_{p}}\left(B_{1 / 2}\right)} \leq C\|u\|_{L^{p}\left(B_{1}\right)} \tag{9}
\end{equation*}
$$

for all $m=1,2,3, \ldots$ and some constant $C=C(n, p, \Lambda / \lambda) \in(0, \infty)$ independent of m provided $u \in L^{p}\left(B_{1}\right)$. By choosing $p=2$, we get that $u \in L^{P}\left(B_{1 / 2}\right)$ for all $P \geq 1$. It then follows as a basic fact about Lebesgue functions and (9) that $u \in L^{\infty}\left(B_{1 / 2}\right)$ with

$$
\sup _{B_{1 / 2}} u=\lim _{P \rightarrow \infty}\|u\|_{L^{P}\left(B_{1 / 2}\right)} \leq C\|u\|_{L^{p}\left(B_{1}\right)} .
$$

The supersolution case where $L u \leq 0$ weakly in B_{2} is a bit more complicated (it is convenient for the numbering if we set $R=2$, instead of 1). We can again iterate (7) with $\gamma=\kappa^{-j} p / 2$, $r=3 / 2-2^{-j}$, and $s=3 / 2-2^{-j-1}$ in (7) for $j=1,2, \ldots, m$ to get

$$
\|u\|_{L^{p}\left(B_{1}\right)} \leq C\|u\|_{L^{\kappa}-m_{p}\left(B_{3 / 2}\right)}
$$

for all $0<p<\kappa$, all $m=1,2,3, \ldots$, and some constant $C=C(n, p, \Lambda / \lambda) \in(0, \infty)$ independent of m. Note that since for the supersolution case $\beta<0$ and thus $\gamma<1 / 2$, we need $p<\kappa$. By the Hölder inequality,

$$
\begin{equation*}
\|u\|_{L^{p}\left(B_{1}\right)} \leq C\|u\|_{L^{p_{0}}\left(B_{3 / 2}\right)} \tag{10}
\end{equation*}
$$

for $0<p_{0}<p<\kappa$, and some constant $C=C(n, p, \Lambda / \lambda) \in(0, \infty)$. We can also iterate (8) as above with $\gamma=-\kappa^{j-1} p_{0} / 2$ for $p_{0}>0, r=1 / 2+2^{-j}$, and $s=1 / 2+2^{-j+1}$ in (7) for $j=1,2, \ldots, m$ to get

$$
\begin{equation*}
\|u\|_{L^{-p_{0}}\left(B_{3 / 2}\right)} \leq C\|u\|_{L^{-\kappa^{m}}{ }_{p_{0}}\left(B_{1 / 2}\right)} \tag{11}
\end{equation*}
$$

for all $p_{0}>0$, all $m=1,2,3, \ldots$, and some constant $C=C\left(n, p_{0} \Lambda / \lambda\right) \in(0, \infty)$ independent of m. Observe that (11) implies that $1 / u \in L^{P}\left(B_{1 / 2}\right)$ for all $p \geq 1$ and

$$
\lim _{P \rightarrow \infty}\|u\|_{L^{-P}\left(B_{1 / 2}\right)}=\lim _{P \rightarrow \infty} \frac{1}{\|1 / u\|_{L^{P}\left(B_{1 / 2}\right)}}=\frac{1}{\sup _{B_{1 / 2}}(1 / u)}=\inf _{B_{1 / 2}} u
$$

so by letting $m \rightarrow \infty$ in (11),

$$
\begin{equation*}
\|u\|_{L^{-p_{0}}\left(B_{3 / 2}\right)} \leq C \inf _{B_{1 / 2}} u \tag{12}
\end{equation*}
$$

Thus to complete the proof of Theorem 2, it suffices to show that for some $p_{0} \in(0, p)$,

$$
\begin{equation*}
\|u\|_{L^{p_{0}}\left(B_{3 / 2}(0)\right)} \leq C\|u\|_{L^{-p_{0}}\left(B_{3 / 2}(0)\right)} \tag{13}
\end{equation*}
$$

for some constant $C=C\left(n, p_{0}, \Lambda / \lambda\right) \in(0, \infty)$, as then the conclusion of Theorem 2 will follow from combining (10), (12), and (13).

3 Part 2: Proving (13)

Recall (6),

$$
\int u^{\beta-1}|D u|^{2} \eta^{2} \leq \frac{4 \Lambda^{2}}{\beta^{2} \lambda^{2}} \int u^{\beta+1}|D \eta|^{2}
$$

Let $\beta=-1$ and $w=\log u$ and to get that

$$
\begin{equation*}
\int_{B_{2}} \eta^{2}|D w|^{2} \leq C \int_{B_{2}}|D \eta|^{2} \tag{14}
\end{equation*}
$$

for all $\eta \in W_{0}^{1,2}\left(B_{2}\right)$ for some constant $C=C(\lambda, \Lambda) \in(0, \infty)$.
By choosing η in (14) to be the cutoff function such that $0 \leq \eta \leq 1, \eta=1$ on $B_{7 / 4}(0), \eta=0$ on $\mathbb{R}^{n} \backslash B_{2}(0)$, and $|D \eta| \leq 6$,

$$
\begin{equation*}
\int_{B_{7 / 4}(0)}|D w|^{2} \leq C \tag{15}
\end{equation*}
$$

for some constant $C \in(0, \infty)$.
Choose $\eta=\phi^{\alpha Q-\beta}|w-\ell|^{Q-1}$ in (14) for a cutoff function ϕ such that $0 \leq \phi \leq 1, \phi=1$ in $B_{3 / 2}(0), \phi=0$ on $\mathbb{R}^{n} \backslash B_{7 / 4}(0)$, and $|D \phi| \leq 6$ and constants $Q \geq 1, \ell, \alpha$, and β to be specified later. Since

$$
\left|\frac{d}{d t}\left(|\log (t)-\ell|^{Q}\right)\right|=\frac{Q|\log (t)-\ell|^{Q-1}}{t}
$$

remains bounded as $t \rightarrow \infty,|w-\ell|^{Q-1}=|\log (u)-\ell|^{Q-1} \in W^{1,2}\left(B_{2}\right)$. With this choice of η, (14) yields

$$
\begin{align*}
\int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta}|w-\ell|^{2 Q-2}|D w|^{2} \leq & C Q^{2} \int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta-2}|D \phi|^{2}|w-\ell|^{2 Q-2} \\
& +C Q^{2} \int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta}|w-\ell|^{2 Q-4}|D w|^{2} \tag{16}
\end{align*}
$$

for $C=C(n, \Lambda / \lambda, \nu, \alpha, \beta) \in(0, \infty)$. How we will do the usual computation, where we move the terms with derivatives of w to the left-hand-side and then use the Sobolev inequality (and Hölder inequality) to get an estimate that we will iterate. To move the derivatives of w onto the left hand side, we usually would use Cauchy's inequality. Instead we use Young's inequality to get

$$
C Q^{2}|w-\ell|^{2 Q-4} \leq \frac{1}{2}|w-\ell|^{2 Q-2}+\frac{1}{2}\left(C^{\prime}\right)^{Q} Q^{2 Q-2}
$$

for some constant $C^{\prime}=C^{\prime}(n, \Lambda / \lambda, \nu, \alpha, \beta) \in(0, \infty)$ and then substitute into (16) to get

$$
\begin{aligned}
\int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta}|w-\ell|^{2 Q-2}|D w|^{2} \leq & C Q^{2} \int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta-2}|D \phi|^{2}|w-\ell|^{2 Q-2} \\
& +\left(C^{\prime}\right)^{Q} Q^{2 Q-2} \int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta}|D w|^{2}
\end{aligned}
$$

Then by (15) (below, we will ensure that $\alpha Q \geq \beta+1$),

$$
\int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta}|w-\ell|^{2 Q-2}|D w|^{2} \leq C Q^{2} \int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta-2}|D \phi|^{2}|w-\ell|^{2 Q-2}+C^{Q} Q^{2 Q-2}
$$

for some constant $C=C(n, \Lambda / \lambda, \nu, \alpha, \beta) \in(0, \infty)$. Next, using $|w-\ell|^{2 Q-2} \leq 1+|w-\ell|^{2 Q}$,

$$
\int_{B_{7 / 4}(0)}\left|D\left(\phi^{\alpha Q-\beta}|w-\ell|^{Q}\right)\right|^{2} \leq C^{Q} Q^{2 Q}+C Q^{4} \int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta-2}|D \phi|^{2}|w-\ell|^{2 Q}
$$

so by the Sobolev inequality and definition of ϕ,

$$
\begin{equation*}
\left(\int_{B_{7 / 4}(0)} \phi^{2 \alpha \kappa Q-2 \beta \kappa}|w-\ell|^{2 \kappa Q}\right)^{1 / \kappa} \leq C^{Q} Q^{2 Q}+C Q^{4} \int_{B_{7 / 4}(0)} \phi^{2 \alpha Q-2 \beta-2}|w-\ell|^{2 Q} \tag{17}
\end{equation*}
$$

for some constant $C=C(n, \Lambda / \lambda, \nu, \alpha, \beta) \in(0, \infty)$, where as above $\kappa=n /(n-2)$ if $n \geq 3$ and $\kappa>1$ if $n=2$. (Note that in the case where $b^{i}, c^{i}, d, f^{i}, g$ are not all zero, we have to apply the Hölder inequality here and get in fact $|w-\ell|^{2 Q \tau}$ in the integral on the right-hand-side, where $\tau=q /(q-2)$. Thus we have to use the interpolation inequality (20) below to get (17).) Choose β so that $\beta \kappa=\beta+1$, i.e. $\beta=1 /(\kappa-1)$, and thus

$$
\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa Q} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa} \leq C^{Q} Q^{2 Q}+C Q^{4} \int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 Q} \cdot \phi^{-2 \beta-2} d X
$$

Taking the $1 / Q$ power of both sides and using $(a+b)^{1 / Q} \leq a^{1 / Q}+b^{1 / Q}$ for $a, b \geq 0$ yields

$$
\begin{equation*}
\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa Q} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa Q} \leq C Q^{2}+C^{1 / Q}\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 Q} \cdot \phi^{-2 \beta-2} d X\right)^{1 / Q} \tag{18}
\end{equation*}
$$

Iterating (18) by taking $Q=\kappa^{m-1}$ for integers $m \geq m_{0}+1$, where m_{0} is the least integer such that $\kappa^{m_{0}} \geq 2$, we obtain

$$
\begin{align*}
& \left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m}} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m}} \leq C \kappa^{2 m-2}+C^{\kappa^{-m+1}}\left(C \kappa^{2 m-4}+C^{\kappa^{-m+2}}(\cdots\right. \\
& \left.\left.\left(C \kappa^{2 m_{0}}+C^{\kappa^{-m_{0}}}\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m}} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m_{0}}}\right) \cdots\right)\right) \\
& =C \kappa^{2 m}+\sum_{j=m_{0}+1}^{m-2} C^{\sum_{l=j+1}^{m-1} \kappa^{-2 l}} \cdot C \kappa^{2 j}+C^{\sum_{l=m_{0}+2}^{m-1} \kappa^{-2 l}} \cdot C\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m_{0}}} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m_{0}}} \\
& \leq C \kappa^{2 m}+C\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m} 0} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m_{0}}} \tag{19}
\end{align*}
$$

for every integer $m \geq 1$ for constants $C=C(n, \Lambda / \lambda, \nu, q, \alpha) \in(0, \infty)$ independent of m, provided $m \geq m_{0}+3$ and with obvious modification if $m=m_{0}+1, m_{0}+2$.

Now recall that by the Hölder inequality and Young's inequality, we have the following interpolation result: for any function $f \in L^{p_{1}}$ on an abstract measure space, $1 \leq p_{0}<p_{1}<\infty$, and p_{t} defined by $1 / p_{t}=(1-t) / p_{0}+t / p_{1}$ for each $t \in(0,1)$,

$$
\begin{equation*}
\|f\|_{L^{p_{t}}} \leq\left\|f^{1-t}\right\|_{L^{p_{0} /(1-t)}}\left\|f^{t}\right\|_{L^{p_{0} / t}}=\|f\|_{L^{p_{0}}}^{1-t}\|f\|_{L^{p_{1}}}^{t} \leq(1-t)\|f\|_{L^{p_{0}}}+t\|f\|_{L^{p_{1}}} . \tag{20}
\end{equation*}
$$

By letting $f=\phi^{\alpha}|w-\ell|$ on the measure space $B_{7 / 4}(0)$ with measure $\phi^{\kappa /(\kappa-1)} d X$ and choosing p_{0}, p_{1}, and t so that t is small and $p_{0}=2, p_{1}=\kappa^{m}$, and $p_{t}=\kappa^{m_{0}-1}$ for some integer $m>m_{0}$,

$$
\begin{aligned}
& \left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m} 0} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m_{0}}} \\
& \leq\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2} \cdot \phi^{-2 \beta-2} d X\right)^{1 / 2}+t\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m}} \cdot \phi^{-2 \beta-2} d X\right)^{1 / 2 \kappa^{m}} \\
& \leq\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2} \cdot \phi^{-2 \beta-2} d X\right)^{1 / 2}+t C \kappa^{2 m}+t C\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m} 0} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m_{0}}}
\end{aligned}
$$

and so taking t small enough that $t C<1 / 2$ and fixing m,

$$
\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m_{0}}} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m_{0}}} \leq C+C\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2} \cdot \phi^{-2 \beta-2} d X\right)^{1 / 2}
$$

for some constant $C=C(n, \Lambda / \lambda, \nu, q, \alpha) \in(0, \infty)$. By choosing $\alpha=\beta+1$,

$$
\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m_{0}}} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m_{0}}} \leq C+C\left(\int_{B_{7 / 4}(0)}|w-\ell|^{2} d X\right)^{1 / 2}
$$

By the Poincaré inequality and (15), for some constant $\ell \in \mathbb{R}$,

$$
\begin{equation*}
\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m 0}} \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m_{0}}} \leq C+C\left(\int_{B_{7 / 4}(0)}|D w|^{2}\right)^{1 / 2} \leq C \tag{21}
\end{equation*}
$$

for some constants $C=C(n, \Lambda / \lambda, \nu, q) \in(0, \infty)$. Combining (19) and (21),

$$
\left(\int_{B_{7 / 4}(0)}\left(\phi^{\alpha}|w-\ell|\right)^{2 \kappa^{m}} \cdot \phi^{-2 \beta-2} d X\right)^{1 / \kappa^{m}} \leq C \kappa^{2 m}
$$

By the definition of ϕ,

$$
\begin{equation*}
\left(\int_{B_{3 / 2}(0)}|w-\ell|^{2 \kappa^{m}} d X\right)^{1 / \kappa^{m}} \leq C \kappa^{2 m} \tag{22}
\end{equation*}
$$

for some constant $C=C(n, \Lambda / \lambda, \nu, q) \in(0, \infty)$.
Given any integer $j \geq 2$, choose $m \geq 1$ such that such that $2 \kappa^{m-1} \leq j<2 \kappa^{m}$ in (22) to obtain

$$
\begin{equation*}
\int_{B_{3 / 2}(0)}|w-\ell|^{j} \leq(C j)^{j} \tag{23}
\end{equation*}
$$

for some constant $C=C(n, \Lambda / \lambda, \nu, q) \in(0, \infty)$. Note that (23) holds true for $j=1$.
Recall the Taylor series $e^{x}=\sum_{j=0}^{\infty} x^{j} / j!$ for $x \in \mathbb{R}$ and observe that this implies that

$$
e^{x / e} \leq 1+\sum_{j=1}^{\infty} \frac{x^{j}}{j^{j}}
$$

for all $x \geq 0$. Thus

$$
\int_{B_{3 / 2}(0)} e^{p_{0}|w-\ell|} \leq 1+\int_{B_{3 / 2}(0)} \sum_{j=1}^{\infty} \frac{|w-\ell|^{j}}{(2 C j)^{j}} \leq 1+\sum_{j=1}^{\infty} \frac{1}{2^{j}}=\frac{3}{2} .
$$

where $p_{0}=1 /(2 e C)$. Consequently

$$
\int_{B_{3 / 2}(0)} e^{p_{0}(w-\ell)} \leq \frac{3}{2} \text { and } \int_{B_{3 / 2}(0)} e^{-p_{0}(w-\ell)} \leq \frac{3}{2}
$$

which multiplying each side yields

$$
\left(\int_{B_{3}(0)} e^{-p_{0} w}\right)\left(\int_{B_{3 / 2}(0)} e^{+p_{0} w}\right) \leq \frac{9}{4}
$$

Since $w=\log u$,

$$
\left(\int_{B_{3 / 2}(0)} u^{-p_{0}}\right)\left(\int_{B_{3 / 2}(0)} u^{+p_{0}}\right) \leq \frac{9}{4}
$$

which is equivalent to (13).

References

[GT] David Gilbarg, Neil S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer, 1998.

