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1 Statement of theorems

Theorem 1. Suppose u ∈ W 1,2(BR(x0)) such that u ≥ 0 in BR(x0) and

Lu = Di(a
ijDju+ biu) + cjDju+ du ≥ Dif

i + g weakly in BR(x0),

where aij ∈ L∞(BR(x0)), bi, ci, f i ∈ Lq(BR(x0)), and d, g ∈ Lq/2(BR(x0)) for q > n such that

aij(x)ξiξj ≥ λ|ξ|2 for a.e. x and ξ ∈ Rn (1)

for some constant λ > 0 and

n∑
i,j=1

|aij|2 ≤ Λ2, λ−2R2−2n/q

n∑
i,j=1

(‖bi‖2
Lq + ‖ci‖2

Lq) + λ−1R2−2n/q‖d‖Lq/2 ≤ ν (2)

on BR(x0) for some constants Λ, ν ∈ (0,∞). Then u ∈ L∞(BR/2(x0)) such that for p > 1,

sup
BR/2(x0)

u ≤ C(R−n/p‖u‖Lp(BR(x0)) + λ−1R1−n/q‖f‖Lq(BR(x0)) + λ−1R2−2n/q‖g‖Lq/2(BR(x0)))

for some constant C = C(n, q, p,Λ/λ, ν) ∈ (0,∞).

Theorem 2 (Weak Harnack inequality). Suppose u ∈ W 1,2(B2R(x0)) such that u ≥ 0 in B2R(x0)
and

Lu = Di(a
ijDju+ biu) + cjDju+ du ≤ Dif

i + g weakly in B2R(x0),

where aij ∈ L∞(B2R(x0)), bi, ci, f i ∈ Lq(B2R(x0)), and d, g ∈ Lq/2(B2R(x0)) for q > n such that
(1) and (2) hold (on B2R(x0)) for some constants λ,Λ, ν ∈ (0,∞). Then for 1 ≤ p < n/(n− 2),

R−n/p‖u‖Lp(BR(x0)) ≤ C( inf
BR/2(x0)

u+ λ−1R1−n/q‖f‖Lq(BR(x0) + λ−1R2−2n/q‖g‖Lq/2(BR(x0)))

for some constant C = C(n, q, p,Λ/λ, ν) ∈ (0,∞).

Observe that Theorem 1 says remarkably that if we have a subsolution u ∈ W 1,2, which needn’t
be bounded, then in fact u is bounded. In fact we will later use Theorem 2 to say something slightly
stronger, namely that any solution u ∈ W 1,2 to an elliptic equation is in fact Hölder continuous.
In the proof, we will show that u is bounded by showing u ∈ Lp for all p ≥ 1 with the average Lp
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norm of u uniformly bounded independent of p. Thus the interesting step here is how we go from
u ∈ L2 to u ∈ Lp for p ≥ 2. This is called Moser iteration.

Recall that later we will prove a Hölder continuity estimate using the weak Harnack inequality.
In the case of quasilinear elliptic equations, which is a class of nonlinear elliptic equations including
the minimal surface equation, by differentiating the quasilinear equation one can use this to prove
C1,µ estimates on solutions. This is the key to the Leray-Schauder existence theory for quasilinear
elliptic equations. Using the maximum principle and energy estimates, one can establish C1 bounds
on solutions to quasilinear elliptic equations in divergence form, however the Leray-Schauder
theory requires a C1,µ bound.

Before looking at the proof, observe that by combining Theorems 1 and 2, we obtain:

Corollary 1 (Harnack inequality). Let Ω be a connected open set in Rn. Suppose u ∈ W 1,2(Ω)
such that u ≥ 0 in Ω and

Lu = Di(a
ijDju+ biu) + cjDju+ du = Dif

i + g weakly in Ω,

where aij ∈ L∞(Ω), bi, ci, f i ∈ Lq(Ω), and d, g ∈ Lq/2(Ω) for q > n such that (1) holds true on Ω
and

n∑
i,j=1

|aij|2 ≤ Λ2, λ−2

n∑
i,j=1

(‖bi‖2
Lq(Ω) + ‖ci‖2

Lq(Ω)) + λ−1‖d‖Lq/2(Ω) ≤ ν

for some constants λ,Λ, ν ∈ (0,∞). Then u ∈ L∞loc(Ω) and for every Ω′ ⊂⊂ Ω,

sup
Ω′
u ≤ C(inf

Ω′
u+ λ−1‖f‖Lq(Ω) + λ−1‖g‖Lq/2(Ω))

for C = C(n,Λ/λ, ν,Ω′,Ω) ∈ (0,∞).

Proof. By combining Theorems 1 and 2, choosing p ∈ (1, n/(n−2)), for every ball B4R(x0) ⊂⊂ Ω,

sup
BR(x0)

u ≤ C( inf
BR(x0)

u+ λ−1R1−n/q‖f‖Lq(Ω) + λ−1R2−2n/q‖g‖Lq/2(Ω)) (3)

for some constant C = C(n, q, p,Λ/λ, ν) ∈ [2,∞). Cover Ω′ be a finite collection of open balls
Bj = BRj(xj), j = 1, 2, . . . , N , such that B4Rj(xj) ⊂⊂ Ω. Assume

⋃N
j=1 Bj is connected, as

otherwise
⋃N
j=1Bj consists of finitely many connected components, each of which can be connected

by a continuous path in Ω since Ω is connected and then we can cover the path by additional balls
Bj until

⋃N
j=1Bj is connected. Let y, z ∈ Ω′ and γ : [0, 1]→ Ω′ be a path from γ(0) = y to γ(1) = z.

It is clear that since the balls Bj cover the image of γ, we can label the balls B1, B2, . . . , BM , where
M ≤ N , and find times 0 = t0 < t1 < t2 < · · · < tM−1 < tM = 1 so that γ(tj) ∈ Bj ∩ Bj+1 for
1 ≤ j < M . Specifically, inductively define Bj and tj by choosing B1 containing y and then for
each j ≥ 1 choosing Bj+1 to contain γ(τj), where τj = sup{t ∈ (tj−1, 1] : γ(t) ∈ Bj and then
choosing tj slightly less than τj such that γ(tj) ∈ Bj ∩Bj+1. By (3),

sup
Bj

u ≤ C(inf
Bj
u+ λ−1‖f‖Lq(Ω) + λ−1‖g‖Lq/2(Ω)) (4)

for all j = 1, 2, . . . ,M for some constant C ∈ [1,∞) depending only on n, q, Λ/λ, ν, and the radii
Rj. After perturbing y, z, and tj slightly if necessary to account for the fact that u is only defined
up to sets of zero measure, (4) implies that

u(γ(tj)) ≤ C(u(γ(tj+1)) + λ−1‖f‖Lq(Ω) + λ−1‖g‖Lq/2(Ω))
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for j = 0, 1, 2, . . . ,M − 1, from which it follows that

u(y) ≤ CNu(z) +
N∑
j=1

Cjλ−1(‖f‖Lq(Ω) + ‖g‖Lq/2(Ω)).

Taking the essential supremum over y ∈ Ω′ and the essential infimum over z ∈ Ω′,

sup
Ω′
u ≤ CN inf

Ω′
u+

N∑
j=1

Cjλ−1(‖f‖Lq(Ω) + ‖g‖Lq/2(Ω)).

2 Part 1 of proof: Weak equation and Moser iteration

In this section we will prove Theorem 1 and begin the proof of Theorem 2. It will be convenient
to do this with the two theorems jointly. First we can assume by translation and rescaling that
x0 = 0 and R = 1.

The basic idea is to use the test function ζ = uβη2 in the weak equation∫
aijDjuDiζ ≤ (≥)0, (5)

where η ∈ W 1,2
0 . For now assume that ζ ∈ W 1,2

0 ; we will come back this later. The choice of test
function yields

β

∫
aijuβ−1DiuDjuη

2 ≤ (≥)− 2

∫
aijuβηDjuDiη.

Now choose β > 0 if Lu ≥ 0 weakly in B1 and β < 0 if Lu ≤ 0 weakly in B1. By ellipticity and
the bound on aij,

|β|λ
∫
uβ−1|Du|2η2 ≤ 2Λ

∫
uβη|Du||Dη|

and so by Cauchy’s inequality,∫
uβ−1|Du|2η2 ≤ 4Λ2

β2λ2

∫
uβ+1|Dη|2. (6)

Now assume that β 6= −1 and let γ = (β + 1)/2 and w = uγ to get∫
|Dw|2η2 ≤ 4Λ2γ2

β2λ2

∫
w2|Dη|2,

which implies ∫
|D(wη)|2 ≤ C

∫
w2|Dη|2

for some constant C = C(Λ/λ) ∈ (0,∞) provided β remains bounded away from zero. Applying
the Sobolev inequality on the left-hand-side,

‖wη‖L2κ(B1) ≤ C‖wDη‖L2(B1),
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where κ = n/(n − 2) > 1 if n ≥ 3 and 1 < κ < ∞ and C = C(n,Λ/λ) ∈ (0,∞) is a constant.
(Note that in the general case where bi, ci, d, f i, g are not all zero, we also use the Hölder inequality
here to deal with these terms.) Using the fact that w = uγ and choosing η be a cutoff function
such that

‖u‖L2κγ(Br) ≤ (C(s− r)−1γ)1/γ‖u‖L2γ(Bs) (7)

if γ > 0 and 0 < r < s and

‖u‖L2γ(Bs) ≤ (C(s− r)−1|γ|)1/|γ|‖u‖L2κγ(Br) (8)

if γ < 0 and 0 < r < s. Note that we let ‖u‖Lp′ (B) =
(∫

B
up
′)1/p′

for any ball B even when p′ < 1,
though this is clearly just notation and does not represent a norm. The basic idea now is to iterate
the inequalities (7) and (8).

Now the above argument is not quite rigorous yet since we need ζ ∈ W 1,2
0 (B1). Consider more

generally ζ = G(u)η2, where G : R → R is C1. To show that ζ ∈ W 1,2 we typically use the
fact that G′ is bounded. However, when G(t) = tβ, G′(t) = βtβ−1, which becomes unbounded as
t→∞ for β > 1 and becomes unbounded as t ↓ 0 for β < 1. By replacing u with u+ ε for ε ↓ 0,
we can prove Theorems 1 and 2 in the special case that u is strictly positive. Moreover, when
β > 1 we instead let ζ = G(u)η2 in (5), where

G(t) =

{
tβ if t ≤ N,
Nβ + βNβ−1(t−N) if t ≥ N.

This yields ∫
aijG′(u)DiuDjuη

2 ≤ −2

∫
aijG(u)ηDjuDiη.

By ellipticity and the bound on aij and the fact that G(u) ≤ G′(u)u due to G being convex,

λ

∫
G′(u)|Du|2η2 ≤ 2Λ

∫
G′(u)uη|Du||Dη|

and so by Cauchy’s inequality,∫
G′(u)|Du|2η2 ≤ 4Λ2

λ2

∫
G′(u)u2|Dη|2.

Now if u ∈ L2γ(B1), then we can let N →∞ to obtain (6) and then argue as above to obtain (7).
Now let us suppose that Lu ≥ 0 weakly in B1 and return to (7). Choose γ = κj−1p/2,

r = 1/2 + 2−j−1, and s = 1/2 + 2−j in (7) for j = 1, 2, 3, . . . ,m to get

‖u‖Lκmp(B1/2) ≤
m∏
j=1

(Cp)2κ−j+1/p22jκ−j+1/pκ2(j−1)κ−j+1/p‖u‖Lp(B1)

for all m = 1, 2, 3, . . . and some constant C = C(n,Λ/λ) ∈ (0,∞) provided u ∈ Lp(B1). Using the
fact that

∑∞
j=1 κ

−j <∞ and
∑∞

j=1 jκ
−j <∞ since κ > 1,

‖u‖Lκmp(B1/2) ≤ C‖u‖Lp(B1) (9)
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for all m = 1, 2, 3, . . . and some constant C = C(n, p,Λ/λ) ∈ (0,∞) independent of m provided
u ∈ Lp(B1). By choosing p = 2, we get that u ∈ LP (B1/2) for all P ≥ 1. It then follows as a basic
fact about Lebesgue functions and (9) that u ∈ L∞(B1/2) with

sup
B1/2

u = lim
P→∞

‖u‖LP (B1/2) ≤ C‖u‖Lp(B1).

The supersolution case where Lu ≤ 0 weakly in B2 is a bit more complicated (it is convenient
for the numbering if we set R = 2, instead of 1). We can again iterate (7) with γ = κ−jp/2,
r = 3/2− 2−j, and s = 3/2− 2−j−1 in (7) for j = 1, 2, . . . ,m to get

‖u‖Lp(B1) ≤ C‖u‖Lκ−mp(B3/2)

for all 0 < p < κ, all m = 1, 2, 3, . . ., and some constant C = C(n, p,Λ/λ) ∈ (0,∞) independent
of m. Note that since for the supersolution case β < 0 and thus γ < 1/2, we need p < κ. By the
Hölder inequality,

‖u‖Lp(B1) ≤ C‖u‖Lp0 (B3/2) (10)

for 0 < p0 < p < κ, and some constant C = C(n, p,Λ/λ) ∈ (0,∞). We can also iterate (8) as
above with γ = −κj−1p0/2 for p0 > 0, r = 1/2+2−j, and s = 1/2+2−j+1 in (7) for j = 1, 2, . . . ,m
to get

‖u‖L−p0 (B3/2) ≤ C‖u‖L−κmp0 (B1/2) (11)

for all p0 > 0, all m = 1, 2, 3, . . ., and some constant C = C(n, p0Λ/λ) ∈ (0,∞) independent of m.
Observe that (11) implies that 1/u ∈ LP (B1/2) for all p ≥ 1 and

lim
P→∞

‖u‖L−P (B1/2) = lim
P→∞

1

‖1/u‖LP (B1/2)

=
1

supB1/2
(1/u)

= inf
B1/2

u,

so by letting m→∞ in (11),
‖u‖L−p0 (B3/2) ≤ C inf

B1/2

u. (12)

Thus to complete the proof of Theorem 2, it suffices to show that for some p0 ∈ (0, p),

‖u‖Lp0 (B3/2(0)) ≤ C‖u‖L−p0 (B3/2(0)) (13)

for some constant C = C(n, p0,Λ/λ) ∈ (0,∞), as then the conclusion of Theorem 2 will follow
from combining (10), (12), and (13).

3 Part 2: Proving (13)

Recall (6), ∫
uβ−1|Du|2η2 ≤ 4Λ2

β2λ2

∫
uβ+1|Dη|2.

Let β = −1 and w = log u and to get that∫
B2

η2|Dw|2 ≤ C

∫
B2

|Dη|2 (14)
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for all η ∈ W 1,2
0 (B2) for some constant C = C(λ,Λ) ∈ (0,∞).

By choosing η in (14) to be the cutoff function such that 0 ≤ η ≤ 1, η = 1 on B7/4(0), η = 0
on Rn \B2(0), and |Dη| ≤ 6, ∫

B7/4(0)

|Dw|2 ≤ C (15)

for some constant C ∈ (0,∞).
Choose η = φαQ−β|w − `|Q−1 in (14) for a cutoff function φ such that 0 ≤ φ ≤ 1, φ = 1 in

B3/2(0), φ = 0 on Rn \ B7/4(0), and |Dφ| ≤ 6 and constants Q ≥ 1, `, α, and β to be specified
later. Since ∣∣∣∣ ddt (| log(t)− `|Q

)∣∣∣∣ =
Q| log(t)− `|Q−1

t

remains bounded as t→∞, |w− `|Q−1 = | log(u)− `|Q−1 ∈ W 1,2(B2). With this choice of η, (14)
yields ∫

B7/4(0)

φ2αQ−2β|w − `|2Q−2|Dw|2 ≤CQ2

∫
B7/4(0)

φ2αQ−2β−2|Dφ|2|w − `|2Q−2

+ CQ2

∫
B7/4(0)

φ2αQ−2β|w − `|2Q−4|Dw|2 (16)

for C = C(n,Λ/λ, ν, α, β) ∈ (0,∞). How we will do the usual computation, where we move the
terms with derivatives of w to the left-hand-side and then use the Sobolev inequality (and Hölder
inequality) to get an estimate that we will iterate. To move the derivatives of w onto the left hand
side, we usually would use Cauchy’s inequality. Instead we use Young’s inequality to get

CQ2|w − `|2Q−4 ≤ 1

2
|w − `|2Q−2 +

1

2
(C ′)QQ2Q−2

for some constant C ′ = C ′(n,Λ/λ, ν, α, β) ∈ (0,∞) and then substitute into (16) to get∫
B7/4(0)

φ2αQ−2β|w − `|2Q−2|Dw|2 ≤CQ2

∫
B7/4(0)

φ2αQ−2β−2|Dφ|2|w − `|2Q−2

+ (C ′)QQ2Q−2

∫
B7/4(0)

φ2αQ−2β|Dw|2.

Then by (15) (below, we will ensure that αQ ≥ β + 1),∫
B7/4(0)

φ2αQ−2β|w − `|2Q−2|Dw|2 ≤ CQ2

∫
B7/4(0)

φ2αQ−2β−2|Dφ|2|w − `|2Q−2 + CQQ2Q−2

for some constant C = C(n,Λ/λ, ν, α, β) ∈ (0,∞). Next, using |w − `|2Q−2 ≤ 1 + |w − `|2Q,∫
B7/4(0)

|D(φαQ−β|w − `|Q)|2 ≤ CQQ2Q + CQ4

∫
B7/4(0)

φ2αQ−2β−2|Dφ|2|w − `|2Q,

so by the Sobolev inequality and definition of φ,(∫
B7/4(0)

φ2ακQ−2βκ|w − `|2κQ
)1/κ

≤ CQQ2Q + CQ4

∫
B7/4(0)

φ2αQ−2β−2|w − `|2Q (17)
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for some constant C = C(n,Λ/λ, ν, α, β) ∈ (0,∞), where as above κ = n/(n − 2) if n ≥ 3 and
κ > 1 if n = 2. (Note that in the case where bi, ci, d, f i, g are not all zero, we have to apply the
Hölder inequality here and get in fact |w − `|2Qτ in the integral on the right-hand-side, where
τ = q/(q − 2). Thus we have to use the interpolation inequality (20) below to get (17).) Choose
β so that βκ = β + 1, i.e. β = 1/(κ− 1), and thus(∫

B7/4(0)

(φα|w − `|)2κQ · φ−2β−2dX

)1/κ

≤ CQQ2Q + CQ4

∫
B7/4(0)

(φα|w − `|)2Q · φ−2β−2dX.

Taking the 1/Q power of both sides and using (a+ b)1/Q ≤ a1/Q + b1/Q for a, b ≥ 0 yields(∫
B7/4(0)

(φα|w − `|)2κQ · φ−2β−2dX

)1/κQ

≤ CQ2 + C1/Q

(∫
B7/4(0)

(φα|w − `|)2Q · φ−2β−2dX

)1/Q

.

(18)
Iterating (18) by taking Q = κm−1 for integers m ≥ m0 + 1, where m0 is the least integer such

that κm0 ≥ 2, we obtain(∫
B7/4(0)

(φα|w − `|)2κm · φ−2β−2dX

)1/κm

≤ Cκ2m−2 + Cκ−m+1
(
Cκ2m−4 + Cκ−m+2

(· · ·Cκ2m0 + Cκ−m0

(∫
B7/4(0)

(φα|w − `|)2κm0 · φ−2β−2dX

)1/κm0
 · · ·


= Cκ2m +

m−2∑
j=m0+1

C
∑m−1
l=j+1 κ

−2l · Cκ2j + C
∑m−1
l=m0+2 κ

−2l

· C

(∫
B7/4(0)

(φα|w − `|)2κm0 · φ−2β−2dX

)1/κm0

≤ Cκ2m + C

(∫
B7/4(0)

(φα|w − `|)2κm0 · φ−2β−2dX

)1/κm0

(19)

for every integer m ≥ 1 for constants C = C(n,Λ/λ, ν, q, α) ∈ (0,∞) independent of m, provided
m ≥ m0 + 3 and with obvious modification if m = m0 + 1,m0 + 2.

Now recall that by the Hölder inequality and Young’s inequality, we have the following inter-
polation result: for any function f ∈ Lp1 on an abstract measure space, 1 ≤ p0 < p1 <∞, and pt
defined by 1/pt = (1− t)/p0 + t/p1 for each t ∈ (0, 1),

‖f‖Lpt ≤ ‖f 1−t‖Lp0/(1−t)‖f t‖Lp0/t = ‖f‖1−t
Lp0‖f‖

t
Lp1 ≤ (1− t)‖f‖Lp0 + t‖f‖Lp1 . (20)

By letting f = φα|w− `| on the measure space B7/4(0) with measure φκ/(κ−1)dX and choosing p0,
p1, and t so that t is small and p0 = 2, p1 = κm, and pt = κm0−1 for some integer m > m0,(∫

B7/4(0)

(φα|w − `|)2κm0 · φ−2β−2dX

)1/κm0

≤

(∫
B7/4(0)

(φα|w − `|)2 · φ−2β−2dX

)1/2

+ t

(∫
B7/4(0)

(φα|w − `|)2κm · φ−2β−2dX

)1/2κm

≤

(∫
B7/4(0)

(φα|w − `|)2 · φ−2β−2dX

)1/2

+ tCκ2m + tC

(∫
B7/4(0)

(φα|w − `|)2κm0 · φ−2β−2dX

)1/κm0
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and so taking t small enough that tC < 1/2 and fixing m,(∫
B7/4(0)

(φα|w − `|)2κm0 · φ−2β−2dX

)1/κm0

≤ C + C

(∫
B7/4(0)

(φα|w − `|)2 · φ−2β−2dX

)1/2

.

for some constant C = C(n,Λ/λ, ν, q, α) ∈ (0,∞). By choosing α = β + 1,(∫
B7/4(0)

(φα|w − `|)2κm0 · φ−2β−2dX

)1/κm0

≤ C + C

(∫
B7/4(0)

|w − `|2dX

)1/2

.

By the Poincaré inequality and (15), for some constant ` ∈ R,(∫
B7/4(0)

(φα|w − `|)2κm0φ−2β−2dX

)1/κm0

≤ C + C

(∫
B7/4(0)

|Dw|2
)1/2

≤ C (21)

for some constants C = C(n,Λ/λ, ν, q) ∈ (0,∞). Combining (19) and (21),(∫
B7/4(0)

(φα|w − `|)2κm · φ−2β−2dX

)1/κm

≤ Cκ2m

By the definition of φ, (∫
B3/2(0)

|w − `|2κmdX

)1/κm

≤ Cκ2m (22)

for some constant C = C(n,Λ/λ, ν, q) ∈ (0,∞).
Given any integer j ≥ 2, choose m ≥ 1 such that such that 2κm−1 ≤ j < 2κm in (22) to obtain∫

B3/2(0)

|w − `|j ≤ (Cj)j. (23)

for some constant C = C(n,Λ/λ, ν, q) ∈ (0,∞). Note that (23) holds true for j = 1.
Recall the Taylor series ex =

∑∞
j=0 x

j/j! for x ∈ R and observe that this implies that

ex/e ≤ 1 +
∞∑
j=1

xj

jj

for all x ≥ 0. Thus∫
B3/2(0)

ep0|w−`| ≤ 1 +

∫
B3/2(0)

∞∑
j=1

|w − `|j

(2Cj)j
≤ 1 +

∞∑
j=1

1

2j
=

3

2
.

where p0 = 1/(2eC). Consequently∫
B3/2(0)

ep0(w−`) ≤ 3

2
and

∫
B3/2(0)

e−p0(w−`) ≤ 3

2
,
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which multiplying each side yields(∫
B3(0)

e−p0w
)(∫

B3/2(0)

e+p0w

)
≤ 9

4
.

Since w = log u, (∫
B3/2(0)

u−p0

)(∫
B3/2(0)

u+p0

)
≤ 9

4
,

which is equivalent to (13).

References

[GT] David Gilbarg, Neil S. Trudinger. Elliptic Partial Differential Equations of Second Order.
Springer, 1998.

9


